Improving Case Retrieval Using Typicality

Emmanuelle Gaillard 1, 2 Jean Lieber 1 Emmanuel Nauer 1
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This paper shows how typicality can be used to improve the case retrieval of a case-based reasoning (CBR) system, improving at the same time the global results of the CBR system. Typicality discriminates subclasses of a class in the domain ontology depending of how a subclass is a good example for its class. Our approach proposes to partition the subclasses of some classes into atypical, normal and typical subclasses in order to refine the domain ontology. The refined ontology allows a finer-grained generalization of the query during the retrieval process. The benefits of this approach are presented according to an evaluation in the context of Taaable, a \cbr system designed for the cooking domain.
Type de document :
Communication dans un congrès
23rd International Conference on Case-Based Reasoning (ICCBR 2015), Sep 2015, Frankfurt am Main, Germany. 2015
Liste complète des métadonnées

https://hal.inria.fr/hal-01178317
Contributeur : Emmanuel Nauer <>
Soumis le : samedi 18 juillet 2015 - 17:26:42
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23

Identifiants

  • HAL Id : hal-01178317, version 1

Collections

Citation

Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer. Improving Case Retrieval Using Typicality. 23rd International Conference on Case-Based Reasoning (ICCBR 2015), Sep 2015, Frankfurt am Main, Germany. 2015. 〈hal-01178317〉

Partager

Métriques

Consultations de la notice

249