Averaging Covariance Matrices for EEG Signal Classification based on the CSP: an Empirical Study

Abstract : This paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed , averaging EEG signal covariance matrices is a key step in designing brain-computer interfaces (BCI) based on the popular common spatial pattern (CSP) algorithm. BCI paradigms are typically structured into trials and we argue that this structure should be taken into account. Moreover, the non-Euclidean structure of covariance matrices should be taken into consideration as well. We review several approaches from the literature for averaging covariance matrices in CSP and compare them empirically on three publicly available datasets. Our results show that using Riemannian geometry for averaging covariance matrices improves performances for small dimensional problems, but also the limits of this approach when the dimensionality increases.
Type de document :
Communication dans un congrès
EUSIPCO 2015, Aug 2015, Nice, France
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01182728
Contributeur : Fabien Lotte <>
Soumis le : mardi 4 août 2015 - 04:02:54
Dernière modification le : jeudi 15 février 2018 - 16:36:01
Document(s) archivé(s) le : jeudi 5 novembre 2015 - 10:10:51

Fichier

averageCovMat_CameraReady.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01182728, version 1

Collections

Citation

Florian Yger, Fabien Lotte, Masashi Sugiyama. Averaging Covariance Matrices for EEG Signal Classification based on the CSP: an Empirical Study. EUSIPCO 2015, Aug 2015, Nice, France. 〈hal-01182728〉

Partager

Métriques

Consultations de la notice

427

Téléchargements de fichiers

1351