Improved Partition Trees for Multi-Class Segmentation of Remote Sensing Images

Emmanuel Maggiori 1, 2, * Yuliya Tarabalka 1, 2 Guillaume Charpiat 3, 4
* Auteur correspondant
2 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
3 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
4 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We propose a new binary partition tree (BPT)-based framework for multi-class segmentation of remote sensing images. In the literature, BPTs are typically computed in a bottom-up manner based on spectral similarities, then analyzed to extract image objects. When image objects exhibit a considerable internal spectral variability, it often happens that such objects are composed of several disjoint regions in the BPT, yielding errors in object extraction. We pose the multi-class segmentation problem as an energy minimization task and solve it by using BPTs. Our main contribution consists in introducing a new dissimilarity function for the tree construction , which combines both spectral discrepancies and supervised class-specific information to take into account the within-class spectral variability. The experimental validation proved that the proposed method constitutes a competitive alternative for object-based image classification.
Type de document :
Communication dans un congrès
2015 IEEE International Geoscience and Remote Sensing Symposium - IGARSS 2015, Jul 2015, Milan, Italy
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01182772
Contributeur : Emmanuel Maggiori <>
Soumis le : lundi 3 août 2015 - 14:28:32
Dernière modification le : jeudi 5 avril 2018 - 12:30:12
Document(s) archivé(s) le : mercredi 4 novembre 2015 - 10:22:18

Fichier

IGARSS2015_Maggiori.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01182772, version 1

Citation

Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat. Improved Partition Trees for Multi-Class Segmentation of Remote Sensing Images. 2015 IEEE International Geoscience and Remote Sensing Symposium - IGARSS 2015, Jul 2015, Milan, Italy. 〈hal-01182772〉

Partager

Métriques

Consultations de la notice

548

Téléchargements de fichiers

268