A Solution to a Problem of D. Lau: Complete Classification of Intervals in the Lattice of Partial Boolean Clones

Abstract : The following natural problem, first considered by D. Lau, has been tackled by several authors recently: Let C be a total clone on 2 := {0, 1}. Describe the interval I(C) of all partial clones on 2 whose total component is C. We establish some results in this direction and combine them with previous ones to show the following dichotomy result: For every total clone C on 2, the set I(C) is either finite or of continuum cardinality. 1. Preliminaries Let k ≥ 2 be an integer and let k be a k-element set. Without loss of generality we assume that k := {0,. .. , k − 1}. For a positive integer n, an n-ary partial function on k is a map f : dom (f) → k where dom (f) is a subset of k n , called the domain of f. Let Par (n) (k) denote the set of all n-ary partial functions on k and let Par(k) := n≥1
Type de document :
Article dans une revue
Journal of Multiple-Valued Logic and Soft Computing, 2017, 28 (1), pp.47-58
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01183004
Contributeur : Miguel Couceiro <>
Soumis le : mercredi 5 août 2015 - 18:56:48
Dernière modification le : jeudi 5 avril 2018 - 09:56:01
Document(s) archivé(s) le : mercredi 26 avril 2017 - 09:53:36

Fichier

9998_2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01183004, version 1

Citation

Miguel Couceiro, Lucien Haddad, Karsten Schölzel, Tamas Waldhauser. A Solution to a Problem of D. Lau: Complete Classification of Intervals in the Lattice of Partial Boolean Clones. Journal of Multiple-Valued Logic and Soft Computing, 2017, 28 (1), pp.47-58. 〈hal-01183004〉

Partager

Métriques

Consultations de la notice

515

Téléchargements de fichiers

186