Impact of User Patience on Auto-Scaling Resource Capacity for Cloud Services

Abstract : An important feature of most cloud computing solutions is auto-scaling, an operation that enables dynamic changes on resource capacity. Auto-scaling algorithms generally take into account aspects such as system load and response time to determine when and by how much a resource pool capacity should be extended or shrunk. In this article, we propose a scheduling algorithm and auto-scaling triggering strategies that explore user patience, a metric that estimates the perception end-users have from the Quality of Service (QoS) delivered by a service provider based on the ratio between expected and actual response times for each request. The proposed strategies help reduce costs with resource allocation while maintaining perceived QoS at adequate levels. Results show reductions on resource-hour consumption by up to approximately 9% compared to traditional approaches.
Type de document :
Article dans une revue
Future Generation Computer Systems, Elsevier, 2015, pp.1-10
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01199207
Contributeur : Marcos Dias de Assuncao <>
Soumis le : mardi 15 septembre 2015 - 10:06:50
Dernière modification le : vendredi 20 avril 2018 - 15:44:26
Document(s) archivé(s) le : mardi 29 décembre 2015 - 06:59:31

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01199207, version 1

Collections

Citation

Marcos Dias de Assuncao, Carlos Cardonha, Marco Netto, Renato Cunha. Impact of User Patience on Auto-Scaling Resource Capacity for Cloud Services. Future Generation Computer Systems, Elsevier, 2015, pp.1-10. 〈hal-01199207〉

Partager

Métriques

Consultations de la notice

278

Téléchargements de fichiers

198