Time-Course Gene Set Analysis for Longitudinal Gene Expression Data

Abstract : Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.
Type de document :
Article dans une revue
PLoS Computational Biology, Public Library of Science, 2015, 11 (6), pp.e1004310. 〈10.1371/journal.pcbi.1004310〉
Liste complète des métadonnées

Littérature citée [60 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01203446
Contributeur : Boris Hejblum <>
Soumis le : dimanche 13 novembre 2016 - 02:18:25
Dernière modification le : jeudi 26 juillet 2018 - 10:36:04
Document(s) archivé(s) le : mardi 21 mars 2017 - 14:15:55

Fichier

Hejblum, Skinner, Thiébaut -...
Publication financée par une institution

Identifiants

Collections

Citation

Boris P. Hejblum, Jason Skinner, Rodolphe Thiébaut. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data. PLoS Computational Biology, Public Library of Science, 2015, 11 (6), pp.e1004310. 〈10.1371/journal.pcbi.1004310〉. 〈hal-01203446〉

Partager

Métriques

Consultations de la notice

285

Téléchargements de fichiers

72