Myocardial Infarct Localization using Neighborhood Approximation Forests

Abstract : This paper presents a machine-learning algorithm for the automatic localization of myocardial infarct in the left ventricle. Our method constructs neighbourhood approximation forests, which are trained with previously diagnosed 4D cardiac sequences. We introduce a new set of features that simultaneously exploit information from the shape and motion of the myocardial wall along the cardiac cycle. More precisely, characteristics are extracted from a hyper surface that represents the profile of the myocardial thickness. The method has been tested on a database of 65 cardiac MRI images in order to retrieve the diagnosed infarct area. The results demonstrate the effectiveness of the NAF in predicting the left ventricular infarct location in 7 distinct regions. We evaluated our method by verifying the database ground truth. Following a new examination of the 4D cardiac images, our algorithm may detect misclassified infarct locations in the database.
Type de document :
Communication dans un congrès
Statistical Atlases and Computational Modeling of the Heart (STACOM 2015), Oct 2015, Munich, Germany
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01203579
Contributeur : Herve Lombaert <>
Soumis le : vendredi 24 février 2017 - 16:55:11
Dernière modification le : jeudi 11 janvier 2018 - 16:47:54
Document(s) archivé(s) le : jeudi 25 mai 2017 - 13:50:15

Fichier

MICCAI-STACOM-Myocardial-Infar...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01203579, version 1

Collections

Citation

Héloïse Bleton, Jan Margeta, Herve Lombaert, Hervé Delingette, Nicholas Ayache. Myocardial Infarct Localization using Neighborhood Approximation Forests. Statistical Atlases and Computational Modeling of the Heart (STACOM 2015), Oct 2015, Munich, Germany. 〈hal-01203579〉

Partager

Métriques

Consultations de la notice

275

Téléchargements de fichiers

25