Realization Spaces of Arrangements of Convex Bodies

Abstract : We introduce combinatorial types of arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of the bodies and the topological complexity of their realization space. On one hand, we show that every combinatorial type can be realized by an arrangement of convex bodies and (under mild assumptions) its realization space is contractible. On the other hand, we prove a universality theorem that says that the restriction of the realization space to arrangements of convex polygons with a bounded number of vertices can have the homotopy type of any primary semialgebraic set.
Type de document :
Communication dans un congrès
Janos Pach, Larse Arge. Symposium on Computational Geometry 2015, Jun 2015, Eindhoven, Netherlands. SoCG, 34, pp.16, 2015, <10.4230/LIPIcs.SOCG.2015.599>
Liste complète des métadonnées


https://hal.inria.fr/hal-01203785
Contributeur : Alfredo Hubard <>
Soumis le : mercredi 23 septembre 2015 - 17:39:51
Dernière modification le : samedi 18 février 2017 - 01:14:41
Document(s) archivé(s) le : mardi 29 décembre 2015 - 09:40:54

Fichier

19.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Michael Gene Dobbins, Andreas Holmsen, Alfredo Hubard. Realization Spaces of Arrangements of Convex Bodies. Janos Pach, Larse Arge. Symposium on Computational Geometry 2015, Jun 2015, Eindhoven, Netherlands. SoCG, 34, pp.16, 2015, <10.4230/LIPIcs.SOCG.2015.599>. <hal-01203785>

Partager

Métriques

Consultations de
la notice

214

Téléchargements du document

53