A Groupwise Multilinear Correspondence Optimization for 3D Faces

Timo Bolkart 1 Stefanie Wuhrer 2
2 MORPHEO - Capture and Analysis of Shapes in Motion
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Multilinear face models are widely used to model the space of human faces with expressions. For databases of 3D human faces of different identities performing multiple expressions, these statistical shape models decouple identity and expression variations. To compute a high-quality multilinear face model, the quality of the registration of the database of 3D face scans used for training is essential. Meanwhile, a multilinear face model can be used as an effective prior to register 3D face scans, which are typically noisy and incomplete. Inspired by the minimum description length approach, we propose the first method to jointly optimize a multilinear model and the registration of the 3D scans used for training. Given an initial registration, our approach fully automatically improves the registration by optimizing an objective function that measures the compactness of the multilinear model, resulting in a sparse model. We choose a continuous representation for each face shape that allows to use a quasi-Newton method in parameter space for optimization. We show that our approach is computationally significantly more efficient and leads to correspondences of higher quality than existing methods based on linear statistical models. This allows us to evaluate our approach on large standard 3D face databases and in the presence of noisy initializations.
Type de document :
Communication dans un congrès
IEEE International Conference on Computer Vision (ICCV), Dec 2015, Santiago, Chile. IEEE, pp.3604-3612, 〈10.1109/ICCV.2015.411〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01205460
Contributeur : Stefanie Wuhrer <>
Soumis le : vendredi 25 septembre 2015 - 15:06:22
Dernière modification le : jeudi 9 février 2017 - 16:36:39
Document(s) archivé(s) le : mardi 29 décembre 2015 - 10:03:24

Identifiants

Collections

Citation

Timo Bolkart, Stefanie Wuhrer. A Groupwise Multilinear Correspondence Optimization for 3D Faces. IEEE International Conference on Computer Vision (ICCV), Dec 2015, Santiago, Chile. IEEE, pp.3604-3612, 〈10.1109/ICCV.2015.411〉. 〈hal-01205460〉

Partager

Métriques

Consultations de
la notice

423

Téléchargements du document

1176