Statistical Shape Spaces for 3D Data: A Review

Abstract : Methods and systems for capturing 3D geometry are becoming increasingly commonplace–and with them a plethora of 3D data. Much of this data is unfortunately corrupted by noise, missing data, occlusions or other outliers. However, when we are interested in the shape of a particular class of objects, such as human faces or bodies, we can use machine learning techniques, applied to clean, registered databases of these shapes, to make sense of raw 3D point clouds or other data. This has applications ranging from virtual change rooms to motion and gait analysis to surgical planning depending on the type of shape. In this chapter, we give an overview of these techniques, a brief review of the literature, and comparative evaluation of two such shape spaces for human faces.
Type de document :
Chapitre d'ouvrage
Chi Hau Chen. Handbook of Pattern Recognition and Computer Vision 5th Edition, 2016, 978-981-4656-52-8
Liste complète des métadonnées


https://hal.inria.fr/hal-01205998
Contributeur : Stefanie Wuhrer <>
Soumis le : jeudi 11 février 2016 - 17:44:49
Dernière modification le : samedi 13 février 2016 - 22:13:42
Document(s) archivé(s) le : jeudi 12 mai 2016 - 17:32:29

Fichier

stat_shape_space_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01205998, version 1

Collections

Citation

Alan Brunton, Augusto Salazar, Timo Bolkart, Stefanie Wuhrer. Statistical Shape Spaces for 3D Data: A Review. Chi Hau Chen. Handbook of Pattern Recognition and Computer Vision 5th Edition, 2016, 978-981-4656-52-8. <hal-01205998>

Partager

Métriques

Consultations de
la notice

399

Téléchargements du document

512