Efficient piecewise learning for conditional random fields

Abstract : Conditional Random Field models have proved effective for several low-level computer vision problems. Inference in these models involves solving a combinatorial optimization problem, with methods such as graph cuts, belief propagation. Although several methods have been proposed to learn the model parameters from training data, they suffer from various drawbacks. Learning these parameters involves computing the partition function, which is intractable. To overcome this, state-of-the-art structured learning methods frame the problem as one of large margin estimation. Iterative solutions have been proposed to solve the resulting convex optimization problem. Each iteration involves solving an inference problem over all the labels , which limits the efficiency of these structured methods. In this paper we present an efficient large margin piece-wise learning method which is widely applicable. We show how the resulting optimization problem can be reduced to an equivalent convex problem with a small number of constraints, and solve it using an efficient scheme. Our method is both memory and computationally efficient. We show results on publicly available standard datasets.
Type de document :
Communication dans un congrès
CVPR - IEEE Conference on Computer Vision & Pattern Recognition, Jun 2010, San Francisco, United States. IEEE, 2010, IEEE Conference on Computer Vision and Pattern Recognition. 〈10.1109/CVPR.2010.5540123〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01216761
Contributeur : Karteek Alahari <>
Soumis le : lundi 19 octobre 2015 - 17:17:17
Dernière modification le : vendredi 11 août 2017 - 13:30:30
Document(s) archivé(s) le : mercredi 20 janvier 2016 - 10:51:46

Fichier

alahari10a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Karteek Alahari, Chris Russell, Philip H. S. Torr. Efficient piecewise learning for conditional random fields. CVPR - IEEE Conference on Computer Vision & Pattern Recognition, Jun 2010, San Francisco, United States. IEEE, 2010, IEEE Conference on Computer Vision and Pattern Recognition. 〈10.1109/CVPR.2010.5540123〉. 〈hal-01216761〉

Partager

Métriques

Consultations de la notice

22

Téléchargements de fichiers

26