Dissolved Oxygen Prediction Model Which Based on Fuzzy Neural Network

Abstract : In crab ponds, dissolved oxygen is the foundation for pond cultivation’s survival. The changes of dissolved oxygen content are influenced by multiple factors. Higher levels of dissolved oxygen content are crucial to maintaining healthy growth of crab breeding. Affected by physic-chemical process of aquatic water, the changes of dissolved oxygen content have a large lag. In order to solve the problem of dissolved oxygen forecast, the prediction model which based on fuzzy neural network has been proposed in this paper. It integrated the characteristic of learning fuzzy logic and neural networks optimized performance to realize the dissolved oxygen prediction. The prediction results have shown it more suitable for dissolved oxygen prediction than grey neural network method. The prediction accuracy can meet the need of dissolved control.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.544-551, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_57〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01220866
Contributeur : Hal Ifip <>
Soumis le : mardi 27 octobre 2015 - 08:32:14
Dernière modification le : mercredi 17 janvier 2018 - 10:45:36
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:26:36

Fichier

978-3-642-54341-8_57_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Liu Yalin, Wei Yaoguang, Chen Yingyi. Dissolved Oxygen Prediction Model Which Based on Fuzzy Neural Network. Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.544-551, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_57〉. 〈hal-01220866〉

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

32