Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest

Abstract : We perform a two-step segmentation of the hippocam-pus in histological images. First, we maximize the overlap of an empirically-derived parametric Deformable Model with two crucial landmark sub-structures in the brain image using Differential Evolution. Then, the points located in the previous step determine the region where a thresh-olding technique based on Otsu's method is to be applied. Finally, the segmentation is expanded employing Random Forest in the regions not covered by the model. Our approach showed an average segmentation accuracy of the 92.25% and 92.11% on test sets comprising 15 real and 15 synthetic images, respectively.
Type de document :
Communication dans un congrès
25th IEEE International Symposium on Computer-Based Medical Systems (CBMS’12), Jun 2012, Rome, Italy. pp.1-4, 2012, 〈10.1109/CBMS.2012.6266318〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01221660
Contributeur : Pablo Mesejo Santiago <>
Soumis le : mercredi 28 octobre 2015 - 13:27:02
Dernière modification le : jeudi 29 octobre 2015 - 01:09:00
Document(s) archivé(s) le : vendredi 29 janvier 2016 - 13:18:36

Fichier

PID2332607.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pablo Mesejo, Roberto Ugolotti, Ferdinando Di Cunto, Stefano Cagnoni, Mario Giacobini. Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest. 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS’12), Jun 2012, Rome, Italy. pp.1-4, 2012, 〈10.1109/CBMS.2012.6266318〉. 〈hal-01221660〉

Partager

Métriques

Consultations de la notice

137

Téléchargements de fichiers

44