LU Preconditioning for Overdetermined Sparse Least Squares Problems

Abstract : We investigate how to use an LU factorization with the classical LSQR routine for solving overdetermined sparse least squares problems. Usually L is much better conditioned than A and iterating with L instead of A results in faster convergence. When a runtime test indicates that L is not sufficiently well-conditioned, a partial orthogonalization of L accelerates the convergence. Numerical experiments illustrate the good behavior of our algorithm in terms of storage and convergence.
Type de document :
Communication dans un congrès
International Conference on Parallel Processing and Applied Mathematics, Sep 2015, Krakow, Poland. Springer, 9573, pp.128-137, 2015, Lecture Notes in Computer Science. 〈http://ppam.pl〉. 〈10.1007/978-3-319-32149-3_13〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01223069
Contributeur : Marc Baboulin <>
Soumis le : dimanche 1 novembre 2015 - 20:51:18
Dernière modification le : samedi 14 avril 2018 - 18:04:09

Identifiants

Citation

Gary Howell, Marc Baboulin. LU Preconditioning for Overdetermined Sparse Least Squares Problems. International Conference on Parallel Processing and Applied Mathematics, Sep 2015, Krakow, Poland. Springer, 9573, pp.128-137, 2015, Lecture Notes in Computer Science. 〈http://ppam.pl〉. 〈10.1007/978-3-319-32149-3_13〉. 〈hal-01223069〉

Partager

Métriques

Consultations de la notice

115