Transforming Wikipedia into an Ontology-based Information Retrieval Search Engine for Local Experts using a Third-Party Taxonomy

Gregory Grefenstette 1, * Karima Rafes 2, 3, 4, 1, 5
* Auteur correspondant
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
3 DAHU - Verification in databases
LSV - Laboratoire Spécification et Vérification [Cachan], ENS Cachan - École normale supérieure - Cachan, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8643
Abstract : Wikipedia is widely used for finding general information about a wide variety of topics. Its vocation is not to provide local information. For example, it provides plot, cast, and production information about a given movie, but not showing times in your local movie theatre. Here we describe how we can connect local information to Wikipedia, without altering its content. The case study we present involves finding local scientific experts. Using a third-party taxonomy, independent from Wikipedia's category hierarchy, we index information connected to our local experts, present in their activity reports, and we re-index Wikipedia content using the same taxonomy. The connections between Wikipedia pages and local expert reports are stored in a relational database, accessible through as public SPARQL endpoint. A Wikipedia gadget (or plugin) activated by the interested user, accesses the endpoint as each Wikipedia page is accessed. An additional tab on the Wikipedia page allows the user to open up a list of teams of local experts associated with the subject matter in the Wikipedia page. The technique, though presented here as a way to identify local experts, is generic, in that any third party taxonomy, can be used in this to connect Wikipedia to any non-Wikipedia data source.
Type de document :
Communication dans un congrès
Joint Second Workshop on Language and Ontology & Terminology and Knowledge Structures (LangOnto2 + TermiKS) LO2TKS, May 2016, Portoroz, Slovenia. 2016, 〈http://langandonto.github.io/LangOnto2-TermiKS/〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01224114
Contributeur : Gregory Grefenstette <>
Soumis le : lundi 30 mai 2016 - 11:29:14
Dernière modification le : samedi 18 février 2017 - 01:10:25
Document(s) archivé(s) le : mercredi 31 août 2016 - 10:43:52

Fichiers

Transforming Wikipedia into an...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01224114, version 2
  • ARXIV : 1511.01259

Citation

Gregory Grefenstette, Karima Rafes. Transforming Wikipedia into an Ontology-based Information Retrieval Search Engine for Local Experts using a Third-Party Taxonomy. Joint Second Workshop on Language and Ontology & Terminology and Knowledge Structures (LangOnto2 + TermiKS) LO2TKS, May 2016, Portoroz, Slovenia. 2016, 〈http://langandonto.github.io/LangOnto2-TermiKS/〉. 〈hal-01224114v2〉

Partager

Métriques

Consultations de
la notice

984

Téléchargements du document

804