Generating Unsupervised Models for Online Long-Term Daily Living Activity Recognition

Farhood Negin 1, * Serhan Cosar 1 Michal Koperski 1 François Bremond 1
* Auteur correspondant
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : This paper presents an unsupervised approach for learning long-term human activities without requiring any user interaction (e.g., clipping long-term videos into short-term actions, labeling huge amount of short-term actions as in supervised approaches). First, important regions in the scene are learned via clustering trajectory points and the global movement of people is presented as a sequence of primitive events. Then, using local action descriptors with bag-of-words (BoW) approach, we represent the body motion of people inside each region. Incorporating global motion information with action descriptors, a comprehensive representation of human activities is obtained by creating models that contains both global and body motion of people. Learning of zones and the construction of primitive events is automatically performed. Once models are learned, the approach provides an online recognition framework. We have tested the performance of our approach on recognizing activities of daily living and showed its efficiency over existing approaches.
Type de document :
Communication dans un congrès
asian conference on pattern recognition (ACPR 2015), Nov 2015, kuala lumpur, Malaysia
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01233494
Contributeur : Farhood Negin <>
Soumis le : lundi 30 novembre 2015 - 16:23:47
Dernière modification le : jeudi 11 janvier 2018 - 16:48:40
Document(s) archivé(s) le : samedi 29 avril 2017 - 01:15:27

Fichier

PID3915787.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01233494, version 1

Collections

Citation

Farhood Negin, Serhan Cosar, Michal Koperski, François Bremond. Generating Unsupervised Models for Online Long-Term Daily Living Activity Recognition. asian conference on pattern recognition (ACPR 2015), Nov 2015, kuala lumpur, Malaysia. 〈hal-01233494〉

Partager

Métriques

Consultations de la notice

200

Téléchargements de fichiers

140