Using Formal Grammars to Predict I/O Behaviors in HPC: the Omnisc'IO Approach

Abstract : The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has become crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. To infer grammars, Omnisc'IO is based on StarSequitur, a novel algorithm extending Nevill-Manning's Sequitur algorithm. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher-level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions of any N future I/O operations within a couple of iterations. Its implementation is efficient in both computation time and memory footprint.
Type de document :
Article dans une revue
IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2016, 〈10.1109/TPDS.2015.2485980〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01238103
Contributeur : Shadi Ibrahim <>
Soumis le : vendredi 4 décembre 2015 - 12:15:32
Dernière modification le : mercredi 11 avril 2018 - 02:01:09
Document(s) archivé(s) le : samedi 29 avril 2017 - 05:17:38

Fichier

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, Robert Ross. Using Formal Grammars to Predict I/O Behaviors in HPC: the Omnisc'IO Approach. IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2016, 〈10.1109/TPDS.2015.2485980〉. 〈hal-01238103〉

Partager

Métriques

Consultations de la notice

426

Téléchargements de fichiers

107