Nash Reweighting of Monte Carlo Simulations: Tsumego

David L. St-Pierre 1, 2 Jialin Liu 1, 3 Olivier Teytaud 3, 1
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
2 Montefiore institute
LRI - Laboratoire de Recherche en Informatique, Institut Montefiore - Department of Electrical Engineering and Computer Science
Abstract : Monte Carlo simulations are widely accepted as a tool for evaluating positions in games. It can be used inside tree search algorithms, simple Monte Carlo search, Nested Monte Carlo and the famous Monte Carlo Tree Search algorithm which is at the heart of the current revolution in computer games. If one has access to a perfect simulation policy, then there is no need for an estimation of the game value. In any other cases, an evaluation through Monte Carlo simulations is a possible approach. However, games simulations are, in practice, biased. Many papers are devoted to improve Monte Carlo simulation policies by reducing this bias. In this paper, we propose a complementary tool: instead of modifying the simulations, we modify the way they are averaged by adjusting weights. We apply our method to MCTS for Tsumego solving. In particular, we improve Gnugo-MCTS without any online computational overhead.
Type de document :
Communication dans un congrès
2015 IEEE Congress on Evolutionary Computation (IEEE CEC 2015), May 2015, Sendai, Japan. IEEE Press, pp.1458 - 1465, 2015, 〈10.1109/CEC.2015.7257060〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01245520
Contributeur : Jialin Liu <>
Soumis le : jeudi 17 décembre 2015 - 15:05:53
Dernière modification le : jeudi 11 janvier 2018 - 06:27:14

Identifiants

Citation

David L. St-Pierre, Jialin Liu, Olivier Teytaud. Nash Reweighting of Monte Carlo Simulations: Tsumego. 2015 IEEE Congress on Evolutionary Computation (IEEE CEC 2015), May 2015, Sendai, Japan. IEEE Press, pp.1458 - 1465, 2015, 〈10.1109/CEC.2015.7257060〉. 〈hal-01245520〉

Partager

Métriques

Consultations de la notice

266