On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem - Archive ouverte HAL Access content directly
Conference Papers Year :

On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem

(1) , (2) , (3, 4) , (1) , (3, 5) , (1)
1
2
3
4
5

Abstract

Haplotype assembly is the computational problem of reconstructing the two parental copies, called haplotypes, of each chromosome starting from sequencing reads, called fragments, possibly affected by sequencing errors. Minimum Error Correction (MEC) is a prominent computational problem for haplotype assembly and, given a set of fragments , aims at reconstructing the two haplotypes by applying the minimum number of base corrections. By using novel combinatorial properties of MEC instances, we are able to provide new results on the fixed-parameter tractability and approx-imability of MEC. In particular, we show that MEC is in FPT when para-meterized by the number of corrections, and, on " gapless " instances, it is in FPT also when parameterized by the length of the fragments, whereas the result known in literature forces the reconstruction of complementary haplotypes. Then, we show that MEC cannot be approximated within any constant factor while it is approximable within factor O(log nm) where nm is the size of the input. Finally, we provide a practical 2-approximation algorithm for the Binary MEC, a variant of MEC that has been applied in the framework of clustering binary data.
Fichier principal
Vignette du fichier
Auth-CPM15.pdf (343.07 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01246260 , version 1 (24-05-2017)

Identifiers

Cite

Paola Bonizzoni, Riccardo Dondi, Gunnar W Klau, Yuri Pirola, Nadia Pisanti, et al.. On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem. 26th Annual Symposium on Combinatorial Pattern Matching (CPM), Jun 2015, Ischia, Italy. ⟨10.1007/978-3-319-19929-0⟩. ⟨hal-01246260⟩

Collections

INRIA INRIA2
109 View
119 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More