Skip to Main content Skip to Navigation
Journal articles

Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

Abstract : In this work, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifies up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.
Complete list of metadata

Cited literature [24 references]  Display  Hide  Download
Contributor : Marie-France Sagot Connect in order to contact the contributor
Submitted on : Tuesday, May 30, 2017 - 2:02:01 PM
Last modification on : Tuesday, October 19, 2021 - 11:58:57 PM
Long-term archiving on: : Wednesday, September 6, 2017 - 1:57:30 PM


Publisher files allowed on an open archive



Rumen Andonov, Hristo Djidjev, Gunnar Klau, Mathilde Boudic-Jamin, Inken Wohlers. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric. Algorithms, MDPI, 2015, 8 (4), ⟨10.3390/a8040850⟩. ⟨hal-01248543⟩



Record views


Files downloads