Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

Abstract : In this work, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifies up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.
Type de document :
Article dans une revue
Algorithms, MDPI AG, 2015, 8 (4), 〈10.3390/a8040850〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : Marie-France Sagot <>
Soumis le : mardi 30 mai 2017 - 14:02:01
Dernière modification le : mercredi 16 mai 2018 - 11:23:35
Document(s) archivé(s) le : mercredi 6 septembre 2017 - 13:57:30


Fichiers éditeurs autorisés sur une archive ouverte




Rumen Andonov, Hristo Djidjev, Gunnar Klau, Mathilde Boudic-Jamin, Inken Wohlers. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric. Algorithms, MDPI AG, 2015, 8 (4), 〈10.3390/a8040850〉. 〈hal-01248543〉



Consultations de la notice


Téléchargements de fichiers