Genome sequence analysis with MonetDB - A case study on Ebola virus diversity

Abstract : Next-generation sequencing (NGS) technology has led the life sciences into the big data era. Today, sequencing genomes takes little time and cost, but results in terabytes of data to be stored and analysed. Biologists are often exposed to excessively time consuming and error-prone data management and analysis hurdles. In this paper, we propose a database management system (DBMS) based approach to accelerate and substantially simplify genome sequence analysis. We have extended MonetDB, an open-source column-based DBMS, with a BAM module, which enables easy, flexible, and rapid management and analysis of sequence alignment data stored as Sequence Alignment/Map (SAM/BAM) files. We describe the main features of MonetDB/BAM using a case study on Ebola virus genomes.
Type de document :
Article dans une revue
Datenbank-Spektrum, Springer, 2015, 15 (3), pp.185-191. 〈10.1007/s13222-015-0198-x〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01248546
Contributeur : Marie-France Sagot <>
Soumis le : mardi 30 mai 2017 - 14:10:00
Dernière modification le : mercredi 20 décembre 2017 - 17:42:07
Document(s) archivé(s) le : mercredi 6 septembre 2017 - 14:01:03

Fichier

Cijvat-Genome_sequence_analysi...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Robin Cijvat, Stefan Manegold, Martin Kersten, Gunnar W. Klau, Alexander Schönhuth, et al.. Genome sequence analysis with MonetDB - A case study on Ebola virus diversity. Datenbank-Spektrum, Springer, 2015, 15 (3), pp.185-191. 〈10.1007/s13222-015-0198-x〉. 〈hal-01248546〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

26