Privacy-Preserving Distributed Collaborative Filtering

Abstract : We propose a new mechanism to preserve privacy while lever-aging user profiles in distributed recommender systems. Our mechanism relies on two contributions: (i) an original obfuscation scheme, and (ii) a randomized dissemination protocol. We show that our obfuscation scheme hides the exact profiles of users without significantly decreasing their utility for recommendation. In addition, we precisely characterize the conditions that make our randomized dissemination protocol differentially private. We compare our mechanism with a non-private as well as with a fully private alternative. We consider a real dataset from a user survey and report on simulations as well as planetlab experiments. We dissect our results in terms of accuracy and privacy trade-offs, bandwidth consumption , as well as resilience to a censorship attack. In short, our extensive evaluation shows that our twofold mechanism provides a good trade-off between privacy and accuracy, with little overhead and high resilience.
Type de document :
Article dans une revue
Computing, Springer, 2016, Special Issue on NETYS 2014, 98 (8)
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : Davide Frey <>
Soumis le : mardi 5 janvier 2016 - 23:57:32
Dernière modification le : vendredi 11 janvier 2019 - 13:51:48
Document(s) archivé(s) le : jeudi 7 avril 2016 - 15:43:02


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01251314, version 1


Antoine Boutet, Davide Frey, Rachid Guerraoui, Arnaud Jégou, Anne-Marie Kermarrec. Privacy-Preserving Distributed Collaborative Filtering. Computing, Springer, 2016, Special Issue on NETYS 2014, 98 (8). 〈hal-01251314〉



Consultations de la notice


Téléchargements de fichiers