Collaborative Filtering with Localised Ranking - Archive ouverte HAL Access content directly
Conference Papers Year :

Collaborative Filtering with Localised Ranking

Abstract

In recommendation systems, one is interested in the ranking of the predicted items as opposed to other losses such as the mean squared error. Although a variety of ways to evaluate rankings exist in the literature, here we focus on the Area Under the ROC Curve (AUC) as it widely used and has a strong theoretical underpinning. In practical recommendation, only items at the top of the ranked list are presented to the users. With this in mind we propose a class of objective functions which primarily represent a smooth surrogate for the real AUC, and in a special case we show how to prioritise the top of the list. This loss is differentiable and is optimised through a carefully designed stochastic gradient-descent-based algorithm which scales linearly with the size of the data. We mitigate sample bias present in the data by sampling observations according to a certain power-law based distribution. In addition, we provide computation results as to the efficacy of the proposed method using synthetic and real data.
Not file

Dates and versions

hal-01255890 , version 1 (14-01-2016)

Identifiers

  • HAL Id : hal-01255890 , version 1

Cite

Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon. Collaborative Filtering with Localised Ranking. Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI'15), Jan 2015, Austin, United States. pp.7. ⟨hal-01255890⟩
157 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More