One-Class Classifiers: A Review and Analysis of Suitability in the Context of Mobile-Masquerader Detection

Abstract : One-class classifiers employing for training only the data from one class are justified when the data from other classes is difficult to obtain. In particular, their use is justified in mobile-masquerader detection, where user characteristics are classified as belonging to the legitimate user class or to the impostor class, and where collecting the data originated from impostors is problematic. This paper systematically reviews various one-class classification methods, and analyses their suitability in the context of mobile-masquerader detection. For each classification method, its sensitivity to the errors in the training set, computational requirements, and other characteristics are considered. After that, for each category of features used in masquerader detection, suitable classifiers are identified.
Type de document :
Article dans une revue
Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2007, 6, pp.29-48
Liste complète des métadonnées

Littérature citée [75 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01262354
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 26 janvier 2016 - 16:05:19
Dernière modification le : mardi 12 avril 2016 - 15:28:03
Document(s) archivé(s) le : mercredi 27 avril 2016 - 13:14:12

Fichier

arima00603.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01262354, version 1

Collections

Citation

Oleksiy Mazhelis. One-Class Classifiers: A Review and Analysis of Suitability in the Context of Mobile-Masquerader Detection. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2007, 6, pp.29-48. 〈hal-01262354〉

Partager

Métriques

Consultations de la notice

174

Téléchargements de fichiers

320