Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System

Marvin Faix 1, 2, 3 Jorge Lobo 4 Raphael Laurent 5 Dominique Vaufreydaz 1, 2, 3 Emmanuel Mazer 1, 3
3 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : This paper presents a stochastic computing implementation of a Bayesian sensorimotor system that performs obstacle avoidance for an autonomous robot. In a previous work we have shown that we are able to automatically design a probabilistic machine which computes inferences on a Bayesian model using stochastic arithmetic. We start from a high level Bayesian model description, then our compiler generates an electronic circuit, corresponding to the probabilistic inference, operating on stochastic bit streams. Our goal in this paper is to show that our compilation toolchain and simulation device work on a classic robotic application, sensor fusion for obstacle avoidance. The novelty is in the way the computations are implemented, opening the way for future low power autonomous robots using such circuits to perform Bayesian Inference.
Type de document :
Communication dans un congrès
Workshop on Unconventional Computing for Bayesian Inference (UCBI) at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015), Sep 2015, Hambourg, Germany. 〈http://ap.isr.uc.pt/events/UCBI_iros2015/〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01265559
Contributeur : Dominique Vaufreydaz <>
Soumis le : vendredi 1 juillet 2016 - 10:47:11
Dernière modification le : jeudi 11 octobre 2018 - 08:48:02
Document(s) archivé(s) le : dimanche 2 octobre 2016 - 11:10:39

Fichier

stochastic-bayesian-computatio...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01265559, version 1

Collections

Citation

Marvin Faix, Jorge Lobo, Raphael Laurent, Dominique Vaufreydaz, Emmanuel Mazer. Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System. Workshop on Unconventional Computing for Bayesian Inference (UCBI) at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015), Sep 2015, Hambourg, Germany. 〈http://ap.isr.uc.pt/events/UCBI_iros2015/〉. 〈hal-01265559〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

239