Probabilistic sensor data processing for robot localization on load-sensing floors

Abstract : Load-sensing floors are capable of tracking objects without suffering from occlusions nor posing the same privacy issues as cameras. They have been mostly used to analyze human gait as a way of continuous diagnosis but could also be placed alongside robots to help monitoring in specialized institutions, such as elderly care facilities. However, large-scale deployments necessitate cheap sensors which do not necessarily offer the same precision. With more noisy sensors, lighter robots might be difficult to track and precisely localize. In this article, we investigate various models in order to estimate the position of a robot. We experiment with several robots of different weights and compare the models' estimates against ground truth measurements provided by a motion capture system. We show that with standard-sized tiles of 60 cm, we can track even the lighter robots with less than 4 cm of error.
Type de document :
Communication dans un congrès
IEEE International Conference on Robotics and Automation (ICRA), May 2016, Stockholm, Sweden
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01274696
Contributeur : Francis Colas <>
Soumis le : mardi 16 février 2016 - 10:28:57
Dernière modification le : jeudi 11 janvier 2018 - 02:08:38
Document(s) archivé(s) le : mardi 17 mai 2016 - 10:05:28

Fichier

2016_Rio_ICRA_Probabilistic.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01274696, version 1

Collections

Citation

Maxime Rio, Francis Colas, Mihai Andries, François Charpillet. Probabilistic sensor data processing for robot localization on load-sensing floors. IEEE International Conference on Robotics and Automation (ICRA), May 2016, Stockholm, Sweden. 〈hal-01274696〉

Partager

Métriques

Consultations de la notice

265

Téléchargements de fichiers

209