Easing Coppersmith Methods Using Analytic Combinatorics: Applications to Public-Key Cryptography with Weak Pseudorandomness

Abstract : The \emph{Coppersmith methods} is a family of lattice-based techniques to find small integer roots of polynomial equations. They have found numerous applications in cryptanalysis and, in recent developments, we have seen applications where the number of unknowns and the number of equations are non-constant. In these cases, the combinatorial analysis required to settle the complexity and the success condition of the method becomes very intricate. We provide a toolbox based on \emph{analytic combinatorics} for these studies. It uses the structure of the considered polynomials to derive their generating functions and applies complex analysis techniques to get asymptotics. The toolbox is versatile and can be used for many different applications, including multivariate polynomial systems with arbitrarily many unknowns (of possibly different sizes) and simultaneous modular equations over different moduli. To demonstrate the power of this approach, we apply it to recent cryptanalytic results on number-theoretic pseudorandom generators for which we easily derive precise and formal analysis. We also present new theoretical applications to two problems on RSA key generation and randomness generation used in padding functions for encryption.
Type de document :
Communication dans un congrès
Public-Key Cryptography – PKC 2016, Mar 2016, Taipei, Taiwan. 9615, pp.31, 〈http://troll.iis.sinica.edu.tw/pkc16〉. 〈10.1007/978-3-662-49387-8_3〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01278460
Contributeur : Fabrice Benhamouda <>
Soumis le : mercredi 24 février 2016 - 13:36:41
Dernière modification le : mercredi 16 mai 2018 - 22:46:02

Identifiants

Collections

Citation

Fabrice Benhamouda, Céline Chevalier, Adrian Thillard, Damien Vergnaud. Easing Coppersmith Methods Using Analytic Combinatorics: Applications to Public-Key Cryptography with Weak Pseudorandomness. Public-Key Cryptography – PKC 2016, Mar 2016, Taipei, Taiwan. 9615, pp.31, 〈http://troll.iis.sinica.edu.tw/pkc16〉. 〈10.1007/978-3-662-49387-8_3〉. 〈hal-01278460〉

Partager

Métriques

Consultations de la notice

179