Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay

Abstract : In this paper, we consider a class of second order abstract linear hyperbolic equations with infinite memory and distributed time delay. Under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove well-posedness and stability of the system. Our estimation shows that the dissipation resulting from the infinite memory alone guarantees the asymptotic stability of the system in spite of the presence of distributed time delay. The decay rate of solutions is found explicitly in terms of the growth at infinity of the infinite memory and the distributed time delay convolution kernels. An application of our approach to the discrete time delay case is also given.
Type de document :
Article dans une revue
Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2015, 14 (2), pp.457-491. 〈10.3934/cpaa.2015.14.457〉
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01281645
Contributeur : Aissa Guesmia <>
Soumis le : mercredi 2 mars 2016 - 14:52:54
Dernière modification le : mercredi 19 septembre 2018 - 14:25:56
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 06:41:07

Fichier

CPAA15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Aissa Guesmia, Nasser-Eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2015, 14 (2), pp.457-491. 〈10.3934/cpaa.2015.14.457〉. 〈hal-01281645〉

Partager

Métriques

Consultations de la notice

119

Téléchargements de fichiers

195