Volumetric 3D Tracking by Detection

Abstract : In this paper, we propose a new framework for 3D tracking by detection based on fully volumetric representations. On one hand, 3D tracking by detection has shown robust use in the context of interaction (Kinect) and surface tracking. On the other hand, volumetric representations have recently been proven efficient both for building 3D features and for addressing the 3D tracking problem. We leverage these benefits by unifying both families of approaches into a single, fully volumetric tracking-by-detection framework. We use a centroidal Voronoi tessellation (CVT) representation to compactly tessellate shapes with optimal discretization, construct a feature space, and perform the tracking according to the correspondences provided by trained random forests. Our results show improved tracking and training computational efficiency and improved memory performance. This in turn enables the use of larger training databases than state of the art approaches, which we leverage by proposing a cross-tracking subject training scheme to benefit from all subject sequences for all tracking situations, thus yielding better detection and less overfitting.
Type de document :
Communication dans un congrès
CVPR 2016 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2016, Las Vegas, United States. IEEE, pp.3862-3870, <10.1109/CVPR.2016.419>
Liste complète des métadonnées



https://hal.inria.fr/hal-01300191
Contributeur : Benjamin Allain <>
Soumis le : lundi 20 juin 2016 - 11:53:25
Dernière modification le : vendredi 3 février 2017 - 17:48:59

Fichiers

Huang_Allain_CVPR16.pdf
Fichiers produits par l'(les) auteur(s)


Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Chun-Hao Huang, Benjamin Allain, Jean-Sébastien Franco, Nassir Navab, Slobodan Ilic, et al.. Volumetric 3D Tracking by Detection. CVPR 2016 - IEEE Conference on Computer Vision and Pattern Recognition, Jun 2016, Las Vegas, United States. IEEE, pp.3862-3870, <10.1109/CVPR.2016.419>. <hal-01300191>

Partager

Métriques

Consultations de
la notice

714

Téléchargements du document

801