Near-Duplicate Video Detection Based on an Approximate Similarity Self-Join Strategy

Abstract : The huge amount of redundant multimedia data, like video, has become a problem in terms of both space and copyright. Usually, the methods for identifying near-duplicate videos are neither adequate nor scalable to find pairs of similar videos. Similarity self-join operation could be an alternative to solve this problem in which all similar pairs of elements from a video dataset are retrieved. Nonetheless, methods for similarity self-join have poor performance when applied to high-dimensional data. In this work, we propose a new approximate method to compute similarity self-join in sub-quadratic time in order to solve the near-duplicate video detection problem. Our strategy is based on clustering techniques to find out groups of videos which are similar to each other.
Type de document :
Communication dans un congrès
14th International Workshop on Content-based Multimedia Indexing, Jun 2016, bucarest, Romania
Liste complète des métadonnées


https://hal.inria.fr/hal-01305691
Contributeur : Laurent Amsaleg <>
Soumis le : lundi 25 avril 2016 - 15:29:59
Dernière modification le : mercredi 2 août 2017 - 10:09:15
Document(s) archivé(s) le : mardi 15 novembre 2016 - 08:47:41

Fichier

v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01305691, version 1

Citation

Henrique Batista Da Silva, Zenilton Patrocino Jr., Guillaume Gravier, Laurent Amsaleg, Arnaldo De A. Araújo, et al.. Near-Duplicate Video Detection Based on an Approximate Similarity Self-Join Strategy. 14th International Workshop on Content-based Multimedia Indexing, Jun 2016, bucarest, Romania. <hal-01305691>

Partager

Métriques

Consultations de
la notice

554

Téléchargements du document

226