Designing Parallel Data Processing for Large-Scale Sensor Orchestration

Milan Kabáč 1 Charles Consel 1, 2
1 Phoenix - Programming Language Technology For Communication Services
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, EA4136 - Handicap et système nerveux :Action, communication, interaction: rétablissement de la fonction et de la participation [Bordeaux]
Abstract : Masses of sensors are being deployed at the scale of cities to manage parking spaces, transportation infrastructures to monitor traffic, and campuses of buildings to reduce energy consumption. These large-scale infrastructures become a reality for citizens via applications that orchestrate sensors to deliver high-value, innovative services. These applications critically rely on the processing of large amounts of data to analyze situations, inform users, and control devices. This paper proposes a design-driven approach to developing orchestrating applications for masses of sensors that integrates parallel processing of large amounts of data. Specifically, an application design exposes declarations that are used to generate a programming framework based on the MapReduce programming model. We have developed a prototype of our approach, using Apache Hadoop. We applied it to a case study and obtained significant speedups by parallelizing computations over twelve nodes. In doing so, we demonstrate that our design-driven approach allows to abstract over implementation details, while exposing architectural properties used to generate high-performance code for processing large datasets.
Type de document :
Communication dans un congrès
13th IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2016), Jul 2016, Toulouse, France. 〈http://uic2016.sciencesconf.org〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01319730
Contributeur : <>
Soumis le : lundi 23 mai 2016 - 11:52:10
Dernière modification le : lundi 25 juillet 2016 - 15:18:49

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01319730, version 1
  • Mot de passe : or2gp@bx

Collections

Citation

Milan Kabáč, Charles Consel. Designing Parallel Data Processing for Large-Scale Sensor Orchestration. 13th IEEE International Conference on Ubiquitous Intelligence and Computing (UIC 2016), Jul 2016, Toulouse, France. 〈http://uic2016.sciencesconf.org〉. 〈hal-01319730〉

Partager

Métriques

Consultations de la notice

401

Téléchargements de fichiers

173