Phonétisation statistique adaptable d'énoncés pour le français

Gwénolé Lecorvé 1, * Damien Lolive 1
* Corresponding author
1 EXPRESSION - Expressiveness in Human Centered Data/Media
UBS - Université de Bretagne Sud, IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : Traditional utterance phonetization methods concatenate pronunciations of uncontextualized constituent words. This approach is too weak for some languages, like French, where transitions between words imply pronunciation modifications. Moreover, it makes it difficult to consider global pronunciation strategies, for instance to model a specific speaker or a specific accent. To overcome these problems, this paper presents a new original phonetization approach for French to generate pronunciation variants of utterances. This approach offers a statistical and highly adaptive framework by relying on conditional random fields and weighted finite state transducers. The approach is evaluated on a corpus of isolated words and a corpus of spoken utterances.
Document type :
Conference papers
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.inria.fr/hal-01321358
Contributor : Gwénolé Lecorvé <>
Submitted on : Wednesday, May 25, 2016 - 2:58:35 PM
Last modification on : Thursday, February 7, 2019 - 4:46:18 PM

File

jep_grumph.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01321358, version 1

Citation

Gwénolé Lecorvé, Damien Lolive. Phonétisation statistique adaptable d'énoncés pour le français. Journées d'Études sur la Parole, Jul 2016, Paris, France. ⟨hal-01321358⟩

Share

Metrics

Record views

348

Files downloads

101