Parameters estimate of Riemannian Gaussian distribution in the manifold of covariance matrices

Abstract : The study of P(m), the manifold of m x m symmetric positive definite matrices, has recently become widely popular in many engineering applications, like radar signal processing, mechanics , computer vision, image processing, and medical imaging. A large body of literature is devoted to the barycentre of a set of points in P(m) and the concept of barycentre has become essential to many applications and procedures, for instance classification of SPD matrices. However this concept is often used alone in order to define and characterize a set of points. Less attention is paid to the characterization of the shape of samples in the manifold, or to the definition of a probabilistic model, to represent the statistical variability of data in P(m). Here we consider Gaussian distributions and mixtures of Gaussian distributions on P(m). In particular we deal with parameter estimation of such distributions. This problem, while it is simple in the manifold P(2), becomes harder for higher dimensions, since there are some quantities involved whose analytic expression is difficult to derive. In this paper we introduce a smooth estimate of these quantities using convex cubic spline, and we show that in this case the parameters estimate is coherent with theoretical results. We also present some simulations and a real EEG data analysis.
Type de document :
Communication dans un congrès
9th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2016), Jul 2016, Rio de Janeiro, Brazil
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01325055
Contributeur : Paolo Zanini <>
Soumis le : mercredi 1 juin 2016 - 18:37:10
Dernière modification le : jeudi 11 janvier 2018 - 06:26:27
Document(s) archivé(s) le : vendredi 2 septembre 2016 - 11:03:54

Fichier

Zaninietal_SAM2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01325055, version 1

Citation

Paolo Zanini, Marco Congedo, Christian Jutten, Salem Said, Yannick Berthoumieu. Parameters estimate of Riemannian Gaussian distribution in the manifold of covariance matrices. 9th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2016), Jul 2016, Rio de Janeiro, Brazil. 〈hal-01325055〉

Partager

Métriques

Consultations de la notice

359

Téléchargements de fichiers

205