Skip to Main content Skip to Navigation
Conference papers

Degree of Parkinson's Disease Severity Estimation Based on Speech Signal Processing

Abstract : This paper deals with Parkinson's disease (PD) severity estimation according to the Unified Parkinson's Disease Rating Scale: motor subscale (UPDRS III), which quantifies the hallmark symptoms of PD, using an acoustic analysis of speech signals. Experimental dataset comprised 42 speech tasks acquired from 50 PD patients (UPDRS III ranged from 6 to 92). It was divided into subsets: words, sentences, reading text, monologue and diadochokinetic tasks. We performed a parametrization of the whole corpus and these groups separately using a wide range of conventional and novel speech features. We used guided regu-larized random forest algorithm to select features with maximum clinical information and performed random forests regression to estimate PD severity. According to significant correlations between true UPDRS III scores and scores predicted by the proposed methodology it was shown that information extracted through variety of speech tasks can be used to estimate the degree of PD severity.
Document type :
Conference papers
Complete list of metadatas

Cited literature [25 references]  Display  Hide  Download

https://hal.inria.fr/hal-01328198
Contributor : Khalid Daoudi <>
Submitted on : Tuesday, June 7, 2016 - 7:23:36 PM
Last modification on : Wednesday, April 15, 2020 - 8:36:13 AM

File

TSP2016.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01328198, version 1

Collections

Citation

Zoltan Galaz, Zdenek Mzourek, Jiri Mekyska, Zdenek Smekal, Tomas Kiska, et al.. Degree of Parkinson's Disease Severity Estimation Based on Speech Signal Processing. IEEE 39th International Conference on Telecommunications and Signal Processing, Jun 2016, Vienna, Austria. ⟨hal-01328198⟩

Share