Diagnosis in Infinite-State Probabilistic Systems (long version)

Nathalie Bertrand 1 Serge Haddad 2, * Engel Lefaucheux 2, 1, *
* Auteur correspondant
1 SUMO - SUpervision of large MOdular and distributed systems
Inria Rennes – Bretagne Atlantique , IRISA-D4 - LANGAGE ET GÉNIE LOGICIEL
Abstract : In a recent work, we introduced four variants of diagnosability (FA, IA, FF, IF) in (finite) probabil-istic systems (pLTS) depending whether one considers (1) finite or infinite runs and (2) faulty or all runs. We studied their relationship and established that the corresponding decision problems are PSPACE-complete. A key ingredient of the decision procedures was a characterisation of diagnosability by the fact that a random run almost surely lies in an open set whose specification only depends on the qualitative behaviour of the pLTS. Here we investigate similar issues for infinite pLTS. We first show that this characterisation still holds for FF-diagnosability but with a G δ set instead of an open set and also for IF-and IA-diagnosability when pLTS are finitely branching. We also prove that surprisingly FA-diagnosability cannot be characterised in this way even in the finitely branching case. Then we apply our characterisations for a partially observable probabilistic extension of visibly pushdown automata (POpVPA), yielding EXPSPACE procedures for solving diagnosability problems. In addition, we establish some computational lower bounds and show that slight extensions of POpVPA lead to undecidability.
Type de document :
Rapport
[Research Report] Inria Rennes; LSV, ENS Cachan. 2016
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01334218
Contributeur : Engel Lefaucheux <>
Soumis le : lundi 20 juin 2016 - 16:04:12
Dernière modification le : mercredi 11 avril 2018 - 02:01:24

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01334218, version 1

Citation

Nathalie Bertrand, Serge Haddad, Engel Lefaucheux. Diagnosis in Infinite-State Probabilistic Systems (long version). [Research Report] Inria Rennes; LSV, ENS Cachan. 2016. 〈hal-01334218〉

Partager

Métriques

Consultations de la notice

386

Téléchargements de fichiers

58