Scalable Algorithms for Nearest-Neighbor Joins on Big Trajectory Data (Extended abstract)

Abstract : Trajectory data are prevalent in systems that monitor the locations of moving objects. In a location-based service, for instance, the positions of vehicles are continuously monitored through GPS; the trajectory of each vehicle describes its movement history. We study joins on two sets of trajectories, generated by two sets M and R of moving objects. For each entity in M , a join returns its k nearest neighbors from R. We examine how this query can be evaluated in cloud environments. This problem is not trivial, due to the complexity of the trajectory, and the fact that both the spatial and temporal dimensions of the data have to be handled. To facilitate this operation, we propose a parallel solution framework based on MapReduce. We also develop a novel bounding technique, which enables trajectories to be pruned in parallel. Our approach can be used to parallelize existing single-machine trajectory join algorithms. To evaluate the efficiency and the scalability of our solutions, we have performed extensive experiments on a real dataset.
Type de document :
Communication dans un congrès
IEEE. International Conference on Data Engineering (ICDE), May 2016, Helsinki, Finland. pp.1528-1529, 〈http://icde2016.fi/〉. 〈10.1109/ICDE.2016.7498408〉
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01342051
Contributeur : Silviu Maniu <>
Soumis le : jeudi 7 juillet 2016 - 15:46:45
Dernière modification le : jeudi 11 janvier 2018 - 06:27:11

Fichier

fang2016trajectory-abstract.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yixiang Fang, Reynold Cheng, Wenbin Tang, Silviu Maniu, Xuan Yang. Scalable Algorithms for Nearest-Neighbor Joins on Big Trajectory Data (Extended abstract). IEEE. International Conference on Data Engineering (ICDE), May 2016, Helsinki, Finland. pp.1528-1529, 〈http://icde2016.fi/〉. 〈10.1109/ICDE.2016.7498408〉. 〈hal-01342051〉

Partager

Métriques

Consultations de la notice

134

Téléchargements de fichiers

83