Parameter uncertainties quantification for finite element based subspace fitting approaches

Guillaume Gautier 1, 2, * Laurent Mevel 1 Jean-Mathieu Mencik 3 Michael Döhler 1 Roger Serra 3
* Auteur correspondant
1 I4S - Statistical Inference for Structural Health Monitoring
IFSTTAR/COSYS - Département Composants et Systèmes, Inria Rennes – Bretagne Atlantique
Abstract : This paper addresses the issue of quantifying uncertainty bounds when updating the finite element model of a mechanical structure from measurement data. The problem arises as to assess the validity of the parameters identification and the accuracy of the results obtained. In this paper, a covariance estimation procedure is proposed about the updated parameters of a finite element model, which propagates the data-related covariance to the parameters by considering a first-order sensitivity analysis. In particular, this propagation is performed through each iteration step of the updating minimization problem, by taking into account the covariance between the updated parameters and the data-related quantities. Numerical simulations on a beam show the feasibility and the effectiveness of the method.
Type de document :
Communication dans un congrès
EWSHM - 8th European Workshop on Structural Health Monitoring, Jul 2016, Bilbao, Spain
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01344198
Contributeur : Michael Döhler <>
Soumis le : lundi 11 juillet 2016 - 14:30:45
Dernière modification le : lundi 1 octobre 2018 - 16:12:03
Document(s) archivé(s) le : mercredi 12 octobre 2016 - 13:30:11

Fichier

EWSHM2016_mod.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01344198, version 1

Collections

Citation

Guillaume Gautier, Laurent Mevel, Jean-Mathieu Mencik, Michael Döhler, Roger Serra. Parameter uncertainties quantification for finite element based subspace fitting approaches. EWSHM - 8th European Workshop on Structural Health Monitoring, Jul 2016, Bilbao, Spain. 〈hal-01344198〉

Partager

Métriques

Consultations de la notice

456

Téléchargements de fichiers

90