Symmetry and Orbit Detection via Lie-Algebra Voting

Abstract : In this paper, we formulate an automatic approach to the detection of partial, local, and global symmetries and orbits in arbitrary 3D datasets. We improve upon existing voting-based symmetry detection techniques by leveraging the Lie group structure of geometric transformations. In particular, we introduce a logarithmic mapping that ensures that orbits are mapped to linear subspaces, hence unifying and extending many existing mappings in a single Lie-algebra voting formulation. Compared to previous work, our resulting method offers significantly improved robustness as it guarantees that our symmetry detection of an input model is frame, scale, and reflection invariant. As a consequence, we demonstrate that our approach efficiently and reliably discovers symmetries and orbits of geometric datasets without requiring heavy parameter tuning.
Type de document :
Article dans une revue
Computer Graphics Forum, Wiley, 2016, Proceedings of EUROGRAPHICS Symposium on Geometry Processing, pp.12
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01344293
Contributeur : Pierre Alliez <>
Soumis le : lundi 11 juillet 2016 - 17:26:17
Dernière modification le : mercredi 4 avril 2018 - 11:08:31
Document(s) archivé(s) le : mercredi 12 octobre 2016 - 14:13:40

Fichier

LieSymmetries-author.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01344293, version 1

Collections

Citation

Zeyun Shi, Pierre Alliez, Mathieu Desbrun, Hujun Bao, Jin Huang. Symmetry and Orbit Detection via Lie-Algebra Voting. Computer Graphics Forum, Wiley, 2016, Proceedings of EUROGRAPHICS Symposium on Geometry Processing, pp.12. 〈hal-01344293〉

Partager

Métriques

Consultations de la notice

289

Téléchargements de fichiers

215