Research on Semantic Text Mining Based on Domain Ontology

Abstract : Text mining is an effective means of detecting potentially useful knowledge from large text documents. However conventional text mining technology cannot achieve high accuracy, because it cannot effectively make use of the semantic information of the text. Ontology provides theoretical basis and technical support for semantic information representation and organization. This paper improves the traditional text mining technology which cannot understand the text semantics. The author discusses the text mining methods based on domain ontology, and sets up domain ontology and database at first, then introduces the “concept-concept” correlation matrix and identifies the relationships of conceptions, and puts forward the text mining model based on domain ontology at last. Based on the semantic text mining model, the depth and accuracy of text mining is improved.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 6th Computer and Computing Technologies in Agriculture (CCTA), Oct 2012, Zhangjiajie, China. Springer, IFIP Advances in Information and Communication Technology, AICT-392 (Part I), pp.336-343, 2013, Computer and Computing Technologies in Agriculture VI. 〈10.1007/978-3-642-36124-1_40〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01348116
Contributeur : Hal Ifip <>
Soumis le : vendredi 22 juillet 2016 - 14:02:11
Dernière modification le : vendredi 22 juillet 2016 - 14:11:19
Document(s) archivé(s) le : dimanche 23 octobre 2016 - 12:01:35

Fichier

978-3-642-36124-1_40_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Lihua Jiang, Hong-Bin Zhang, Xiaorong Yang, Nengfu Xie. Research on Semantic Text Mining Based on Domain Ontology. Daoliang Li; Yingyi Chen. 6th Computer and Computing Technologies in Agriculture (CCTA), Oct 2012, Zhangjiajie, China. Springer, IFIP Advances in Information and Communication Technology, AICT-392 (Part I), pp.336-343, 2013, Computer and Computing Technologies in Agriculture VI. 〈10.1007/978-3-642-36124-1_40〉. 〈hal-01348116〉

Partager

Métriques

Consultations de la notice

183

Téléchargements de fichiers

180