Read mapping on de Bruijn graphs

Antoine Limasset 1 Bastien Cazaux 2, 3 Eric Rivals 2, 3 Pierre Peterlongo 1
1 GenScale - Scalable, Optimized and Parallel Algorithms for Genomics
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
3 MAB - Méthodes et Algorithmes pour la Bioinformatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Background Next Generation Sequencing (NGS) has dramatically enhanced our ability to sequence genomes, but not to assemble them. In practice, many published genome sequences remain in the state of a large set of contigs. Each contig describes the sequence found along some path of the assembly graph, however, the set of contigs does not record all the sequence information contained in that graph. Although many subsequent analyses can be performed with the set of contigs, one may ask whether mapping reads on the contigs is as informative as mapping them on the paths of the assembly graph. Currently, one lacks practical tools to perform mapping on such graphs. Results Here, we propose a formal definition of mapping on a de Bruijn graph, analyse the problem complexity which turns out to be NP-complete, and provide a practical solution. We propose a pipeline called GGMAP (Greedy Graph MAPping). Its novelty is a procedure to map reads on branching paths of the graph, for which we designed a heuristic algorithm called BGREAT (de Bruijn Graph REAd mapping Tool). For the sake of efficiency, BGREAT rewrites a read sequence as a succession of unitigs sequences. GGMAP can map millions of reads per CPU hour on a de Bruijn graph built from a large set of human genomic reads. Surprisingly, results show that up to 22 % more reads can be mapped on the graph but not on the contig set. Conclusions Although mapping reads on a de Bruijn graph is complex task, our proposal offers a practical solution combining efficiency with an improved mapping capacity compared to assembly-based mapping even for complex eukaryotic data.
Type de document :
Article dans une revue
BMC Bioinformatics, BioMed Central, 2016, 17 (1), 〈10.1186/s12859-016-1103-9〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01349636
Contributeur : Pierre Peterlongo <>
Soumis le : mercredi 31 août 2016 - 16:27:03
Dernière modification le : jeudi 24 mai 2018 - 15:59:22
Document(s) archivé(s) le : vendredi 2 décembre 2016 - 11:16:09

Fichier

RMDBG.pdf
Publication financée par une institution

Identifiants

Citation

Antoine Limasset, Bastien Cazaux, Eric Rivals, Pierre Peterlongo. Read mapping on de Bruijn graphs. BMC Bioinformatics, BioMed Central, 2016, 17 (1), 〈10.1186/s12859-016-1103-9〉. 〈hal-01349636〉

Partager

Métriques

Consultations de la notice

1439

Téléchargements de fichiers

116