Learning pathological deviations from a normal pattern of myocardial motion: Added value for CRT studies?

Abstract : Strong links exist between mechanical dyssynchrony and the response to cardiac resynchronization therapy (CRT). Recent publications recommend identifying correctable dyssynchrony patterns with a specific motion and deformation signature. The learning of these patterns is visual and highly subjective. We take advantage of statistical atlas and dimensionality reduction tools to learn a representation of these patterns. We hypothesize that myocardial motion patterns belong or lie close to a non-linear manifold, and model them as a pathological deviation from normality. Furthermore, we propose distances to compare new subjects with those patterns and with normality. We evaluate the value of this approach on 2D echocardiographic sequences from CRT candidates at baseline, with pacing on, and at one-year follow-up. We demonstrate that relating pattern changes with patient response is valuable, and paves the ground towards better therapy planning.
Type de document :
Chapitre d'ouvrage
Guorong Wu; Dinggang Shen; Mert Sabuncu. Machine learning and medical imaging, 1st Edition, Elsevier, pp.365-382, 2016
Liste complète des métadonnées

https://hal.inria.fr/hal-01352464
Contributeur : Nicolas Duchateau <>
Soumis le : lundi 8 août 2016 - 10:21:48
Dernière modification le : mercredi 31 janvier 2018 - 15:14:02
Document(s) archivé(s) le : mercredi 9 novembre 2016 - 12:17:22

Fichier

bDuchateau_BookChapter_2016­....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01352464, version 1

Collections

Citation

Nicolas Duchateau, Gemma Piella, Alejandro Frangi, Mathieu De Craene. Learning pathological deviations from a normal pattern of myocardial motion: Added value for CRT studies?. Guorong Wu; Dinggang Shen; Mert Sabuncu. Machine learning and medical imaging, 1st Edition, Elsevier, pp.365-382, 2016. 〈hal-01352464〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

100