Challenges for Efficient Query Evaluation on Structured Probabilistic Data

Antoine Amarilli 1 Silviu Maniu 2 Mikaël Monet 1
1 DBWeb
LTCI - Laboratoire Traitement et Communication de l'Information
Abstract : Query answering over probabilistic data is an important task but is generally intractable. However, a new approach for this problem has recently been proposed, based on structural decompositions of input databases, following, e.g., tree decompositions. This paper presents a vision for a database management system for probabilistic data built following this structural approach. We review our existing and ongoing work on this topic and highlight many theoretical and practical challenges that remain to be addressed.
Type de document :
Communication dans un congrès
Steven Schockaert ; Pierre Senellart. SUM 2016 - 10th International Conference Scalable Uncertainty Management, Sep 2016, Nice, France. Springer, 9858, pp.323-330, 2016, Lecture Notes in Computer Science. 〈10.1007/978-3-319-45856-4_22〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01360167
Contributeur : Silviu Maniu <>
Soumis le : lundi 5 septembre 2016 - 14:48:41
Dernière modification le : mardi 24 avril 2018 - 13:39:14
Document(s) archivé(s) le : mardi 6 décembre 2016 - 13:38:29

Fichier

amarilli2016challenges.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antoine Amarilli, Silviu Maniu, Mikaël Monet. Challenges for Efficient Query Evaluation on Structured Probabilistic Data. Steven Schockaert ; Pierre Senellart. SUM 2016 - 10th International Conference Scalable Uncertainty Management, Sep 2016, Nice, France. Springer, 9858, pp.323-330, 2016, Lecture Notes in Computer Science. 〈10.1007/978-3-319-45856-4_22〉. 〈hal-01360167〉

Partager

Métriques

Consultations de la notice

344

Téléchargements de fichiers

47