Estimation of Maize Planting Area through the Fusion of Multi-source Images

Abstract : The limitations on spatial resolution and on the availability and measurement accuracy of remote sensing images are the primary problems in the estimation of the large-scale planting area for maize. The integration of mid- and low-resolution images is the one of primary methods used for the estimation of large-scale crop planting areas using remote sensing. The use of a single-temporal thematic mapper (TM) image results in a low accuracy of maize recognition, so a mid-scale time-series normalized difference vegetation index (NDVI) dataset, which was derived from the fusion of the moderate-resolution imaging spectroradiometer (MODIS) and TM images based on the wavelet transform, was established. The planting area was estimated using the minimum distance model and the accuracy was evaluated using in-situ samples. The results show that the estimation of the maize-sown area based on the time-series NDVI information of the integrated images reached high levels of gross and position accuracy (89% and 90%), indicating that this method could fully utilize the time-series information from the MODIS images and the spatial resolution of a TM image. The use of the difference in phenophases among fall crops enables the effective classification of the spatial distribution of these crops.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.470-477, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_48〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361016
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:21:28
Dernière modification le : mardi 6 septembre 2016 - 16:06:05
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 14:03:36

Fichier

978-3-642-27278-3_48_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Xiaohe Gu, Yuchun Pan, Xin He, Jihua Wang. Estimation of Maize Planting Area through the Fusion of Multi-source Images. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.470-477, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_48〉. 〈hal-01361016〉

Partager

Métriques

Consultations de la notice

16

Téléchargements de fichiers

25