The Improved DBSCAN Algorithm Study on Maize Purity Identification

Abstract : In order to identify maize purity rapidly and efficiently, the image processing technology and clustering algorithm were studied and explored in depth focused on the maize seed and characteristics of the seed images. An improved DBSCAN on the basis of farthest first traversal algorithm (FFT) adapting to maize seeds purity identification was proposed in the paper. The color features parameters of the RGB, HIS and Lab color models of maize crown core area were extracted, while H, S and B as to be the effective characteristic vector after data analysis. The abnormal points of different density characteristic vector points were separated by FFT. Then clustering results were combined after local density cluster by DBSCAN. According to the result of test, the method plays a great role in improving the accuracy of maize purity identification.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.648-656, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_67〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361052
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 15:37:30
Dernière modification le : mardi 6 septembre 2016 - 16:06:03
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 13:31:14

Fichier

978-3-642-27278-3_67_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Pan Wang, Shuangxi Liu, Mingming Liu, Qinxiang Wang, Jinxing Wang, et al.. The Improved DBSCAN Algorithm Study on Maize Purity Identification. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-369, pp.648-656, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27278-3_67〉. 〈hal-01361052〉

Partager

Métriques

Consultations de la notice

67

Téléchargements de fichiers

51