Study of Micro-vision Calibration Technique Based on SIFT Feature Matching

Abstract : In the micro-vision system, precise calibration of the pixel equivalent is a prerequisite for accurate visual inspection. Traditional calibration process not only needs to take standard parts as the base, but also has strict requirements on their shape, manufacturing precision, placement and so on. Because of such shortcomings of traditional method, this paper gives an improved SIFT calibration algorithm for the pixel equivalent. Firstly, get the image’s characteristic points before and after its’ moving, using SIFT algorithm. Then filter the mismatched points through the second filtering algorithm so that the matching accuracy can be greatly improved. Compare moving distances of the characteristic point pixels to the reference distance of optical grating. Then accurate pixel equivalents can be obtained. Experiments show that the calibration algorithm is more accurate than traditional methods. So this algorithm can completely replace the standard-parts method in micro-vision system.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.270-277, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_30〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01361148
Contributeur : Hal Ifip <>
Soumis le : mardi 6 septembre 2016 - 17:09:16
Dernière modification le : mardi 6 septembre 2016 - 17:40:17
Document(s) archivé(s) le : mercredi 7 décembre 2016 - 14:08:49

Fichier

978-3-642-27275-2_30_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Tao Hu, Hui-Lan Wu, Guodong Liu. Study of Micro-vision Calibration Technique Based on SIFT Feature Matching. Daoliang Li; Yingyi Chen. 5th Computer and Computing Technologies in Agriculture (CCTA), Oct 2011, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-370 (Part III), pp.270-277, 2012, Computer and Computing Technologies in Agriculture V. 〈10.1007/978-3-642-27275-2_30〉. 〈hal-01361148〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

25