Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection

Abstract : The ever growing complexity of high performance computing systems imposes significant challenges to exploit as much as possible their computational and memory resources. Recently, the Cache-aware Roofline Model has gained popularity due to its simplicity when modeling multi-cores with complex memory hierarchy, characterizing applications bottlenecks, and quantifying achieved or remaining improvements. In this short paper we involve hardware locality topology detection to build the Cache Aware Roofline Model for modern processors in an open-source locality-aware tool. The proposed tool also includes a set of specific micro-benchmarks to assess the micro-architecture performance upper-bounds. The experimental results show that by relying on the proposed tool, it was possible to reach near-theoretical bounds of an Intel 3770K processor, thus proving the effectiveness of the modeling methodology.
Type de document :
Communication dans un congrès
NESUS Third Action Workshop and Sixth Management Committee Meeting, Oct 2016, Sofia, Bulgaria. I, 2016, 〈http://www.nesus.eu/event/third-action-workshop-and-sixth-management-committee-meeting?instance_id=292〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01381982
Contributeur : Nicolas Denoyelle <>
Soumis le : lundi 17 octobre 2016 - 09:48:54
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21

Fichier

roofline_model_extension.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01381982, version 1

Collections

Citation

Nicolas Denoyelle, Aleksandar Ilic, Brice Goglin, Leonel Sousa, Emmanuel Jeannot. Automatic Cache Aware Roofline Model Building and Validation Using Topology Detection. NESUS Third Action Workshop and Sixth Management Committee Meeting, Oct 2016, Sofia, Bulgaria. I, 2016, 〈http://www.nesus.eu/event/third-action-workshop-and-sixth-management-committee-meeting?instance_id=292〉. 〈hal-01381982〉

Partager

Métriques

Consultations de la notice

378

Téléchargements de fichiers

250