Evaluation of Recent Computational Approaches in Short-Term Traffic Forecasting

Abstract : Computational technologies under the domain of intelligent systems are expected to help the rapidly increasing traffic congestion problem in recent traffic management. Traffic management requires efficient and accurate forecasting models to assist real time traffic control systems. Researchers have proposed various computational approaches, especially in short-term traffic flow forecasting, in order to establish reliable traffic patterns models and generate timely prediction results. Forecasting models should have high accuracy and low computational time to be applied in intelligent traffic management. Therefore, this paper aims to evaluate recent computational modeling approaches utilized in short-term traffic flow forecasting. These approaches are evaluated by real-world data collected on the British freeway (M6) from 1st to 30th November in 2014. The results indicate that neural network model outperforms generalized additive model and autoregressive integrated moving average model on the accuracy of freeway traffic forecasting.
Type de document :
Communication dans un congrès
Tharam Dillon. 4th IFIP International Conference on Artificial Intelligence in Theory and Practice (AI 2015), Oct 2015, Daejeon, South Korea. IFIP Advances in Information and Communication Technology, AICT-465, pp.108-116, 2015, Artificial Intelligence in Theory and Practice IV. 〈10.1007/978-3-319-25261-2_10〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01383959
Contributeur : Hal Ifip <>
Soumis le : mercredi 19 octobre 2016 - 14:12:23
Dernière modification le : mercredi 19 octobre 2016 - 14:17:42

Fichier

371690_1_En_10_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Haofan Yang, Tharam Dillon, Yi-Ping Chen. Evaluation of Recent Computational Approaches in Short-Term Traffic Forecasting. Tharam Dillon. 4th IFIP International Conference on Artificial Intelligence in Theory and Practice (AI 2015), Oct 2015, Daejeon, South Korea. IFIP Advances in Information and Communication Technology, AICT-465, pp.108-116, 2015, Artificial Intelligence in Theory and Practice IV. 〈10.1007/978-3-319-25261-2_10〉. 〈hal-01383959〉

Partager

Métriques

Consultations de la notice

63

Téléchargements de fichiers

6