Editing Training Sets from Imbalanced Data Using Fuzzy-Rough Sets

Abstract : In this research, we study several instance selection methods based on rough set theory and propose an approach able to deal with inconsistency caused by noise and imbalanced data. Recent attention has focused on the significant results obtained in selecting instances from noisy data using fuzzy-rough sets. For imbalanced data, fuzzy-rough sets approach is also applied before and after using balancing methods in order to improve classification performance. In this study, we propose an approach that uses different criteria for minority and majority classes in fuzzy-rough instance selection. It thus eliminates the step of using balancing techniques employed in controversial approach. We also carry out some experiments, measure classification performance and make comparisons with other methods.
Type de document :
Communication dans un congrès
Richard Chbeir; Yannis Manolopoulos; Ilias Maglogiannis; Reda Alhajj. 11th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI 2015), Sep 2015, Bayonne, France. IFIP Advances in Information and Communication Technology, AICT-458, pp.115-129, 2015, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-23868-5_9〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01385349
Contributeur : Hal Ifip <>
Soumis le : vendredi 21 octobre 2016 - 11:37:52
Dernière modification le : vendredi 1 décembre 2017 - 01:16:44

Fichier

978-3-319-23868-5_9_Chapter.pd...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Do Nguyen, Keisuke Ogawa, Kazunori Matsumoto, Masayuki Hashimoto. Editing Training Sets from Imbalanced Data Using Fuzzy-Rough Sets. Richard Chbeir; Yannis Manolopoulos; Ilias Maglogiannis; Reda Alhajj. 11th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI 2015), Sep 2015, Bayonne, France. IFIP Advances in Information and Communication Technology, AICT-458, pp.115-129, 2015, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-23868-5_9〉. 〈hal-01385349〉

Partager

Métriques

Consultations de la notice

59