Reinforcement Learning Using Monte Carlo Policy Estimation for Disaster Mitigation

Abstract : Urban communities rely heavily on the system of interconnected critical infrastructures. The interdependencies in these complex systems give rise to vulnerabilities that must be considered in disaster mitigation planning. Only then will it be possible to address and mitigate major critical infrastructure disruptions in a timely manner.This paper describes an intelligent decision making system that optimizes the allocation of resources following an infrastructure disruption. The novelty of the approach arises from the application of Monte Carlo estimation for policy evaluation in reinforcement learning to draw on experiential knowledge gained from a massive number of simulations. This method enables a learning agent to explore and exploit the available trajectories, which lead to an optimum goal in a reasonable amount of time. The specific goal of the case study described in this paper is to maximize the number of patients discharged from two hospitals in the aftermath of an infrastructure disruption by intelligently utilizing the available resources. The results demonstrate that a learning agent, through interactions with an environment of simulated catastrophic scenarios, is capable of making informed decisions in a timely manner.
Type de document :
Communication dans un congrès
Jonathan Butts; Sujeet Shenoi. 8th International Conference on Critical Infrastructure Protection (ICCIP), Mar 2014, Arlington, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-441, pp.155-172, 2014, Critical Infrastructure Protection VIII. 〈10.1007/978-3-662-45355-1_11〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01386763
Contributeur : Hal Ifip <>
Soumis le : lundi 24 octobre 2016 - 15:33:00
Dernière modification le : lundi 24 octobre 2016 - 15:40:28

Fichier

978-3-662-45355-1_11_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Mohammed Khouj, Sarbjit Sarkaria, Cesar Lopez, Jose Marti. Reinforcement Learning Using Monte Carlo Policy Estimation for Disaster Mitigation. Jonathan Butts; Sujeet Shenoi. 8th International Conference on Critical Infrastructure Protection (ICCIP), Mar 2014, Arlington, United States. Springer, IFIP Advances in Information and Communication Technology, AICT-441, pp.155-172, 2014, Critical Infrastructure Protection VIII. 〈10.1007/978-3-662-45355-1_11〉. 〈hal-01386763〉

Partager

Métriques

Consultations de la notice

69

Téléchargements de fichiers

71