Learning Iterative Processes with Recurrent Neural Networks to Correct Satellite Image Classification Maps

Emmanuel Maggiori 1 Guillaume Charpiat 2 Yuliya Tarabalka 1 Pierre Alliez 1
1 TITANE - Geometric Modeling of 3D Environments
CRISAM - Inria Sophia Antipolis - Méditerranée
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : While initially devised for image categorization, convolutional neural networks (CNNs) are being increasingly used for the pixelwise semantic labeling of images. However, the proper nature of the most common CNN architectures makes them good at recognizing but poor at localizing objects precisely. This problem is magnified in the context of aerial and satellite image labeling, where a spatially fine object outlining is of paramount importance. Different iterative enhancement algorithms have been presented in the literature to progressively improve the coarse CNN outputs, seeking to sharpen object boundaries around real image edges. However, one must carefully design, choose and tune such algorithms. Instead, our goal is to directly learn the iterative process itself. For this, we formulate a generic iterative enhancement process inspired from partial differential equations, and observe that it can be expressed as a recurrent neural network (RNN). Consequently, we train such a network from manually labeled data for our enhancement task. In a series of experiments we show that our RNN effectively learns an iterative process that significantly improves the quality of satellite image classification maps.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01388551
Contributeur : Emmanuel Maggiori <>
Soumis le : jeudi 27 octobre 2016 - 11:12:29
Dernière modification le : mardi 17 avril 2018 - 09:08:49

Fichier

Maggiori_RNN2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01388551, version 1
  • ARXIV : 1608.03440

Citation

Emmanuel Maggiori, Guillaume Charpiat, Yuliya Tarabalka, Pierre Alliez. Learning Iterative Processes with Recurrent Neural Networks to Correct Satellite Image Classification Maps. 2016. 〈hal-01388551〉

Partager

Métriques

Consultations de la notice

368

Téléchargements de fichiers

530